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The light-front Hamiltonian and BRST formulations of an abelian Higgs model in-
volving the electromagnetic vector gauge field are investigated in one space, one time
dimension in the broken symmetry phase, where the phaseφ(x, t) of the complex matter
field8(x, t) carries the charge degree of freedom of the complex matter field and is, in
fact, akin to the Goldstone boson.

1. INTRODUCTION

The models of quantum electrodynamics with a Higgs potential, namely, the
abelian Higgs models involving the vector gauge fieldAµ(xµ) in lower (one space,
one time (1+1)- or two space, one time (2+1)-) dimensions have been of wide inter-
est in the recent years (Abrikosov, 1957a,b; Banerjeeet al., 1995, 1997; Banks and
Lykken, 1990; Bogomol’nyi, 1976a,b; Chenet al., 1989; Daseret al., 1982a,b;
De Vega and Schaposnik, 1976; Dunne and Trugenberger, 1991; Fetteret al.,
1989; Forte, 1992; Friedberg and Lee, 1977a,b, 1978; Ginsburg and Landau, 1950;
Jackiw, 1989; Jackobs and Rebbi, 1986; Krive and Rozhavskii, 1987; Kulshreshtha,
in press-a; Laughlin, 1988; Leeet al., 1991; Lee and Nam, 1991; Mac Kenzie and
Wilczek, 1988; Nielsen and Olesen, 1973a,b; Saint-Jameset al., 1969). These mod-
els involving a Maxwell term, which accounts for the kinetic energy of the vector
gauge fieldAµ(xµ) (Abrikosov, 1957a,b; Banks and Lykken, 1990; Bogomol’nyi,
1976a,b; Chenet al., 1989; De Vega and Schaposnik, 1976; Fetteret al., 1989;
Forte, 1992; Friedberg and Lee, 1977a,b, 1978; Ginsburg and Landau, 1950;
Jackiw, 1989; Jackobs and Rebbi, 1986; Krive and Rozhavskii, 1987; Kulshreshtha,
in press-a; Leeet al., 1991; Lee and Nam, 1991; Nielsen and Olesen, 1973a,b;
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Saint-Jameset al., 1969), represent field-theoretical models which could be con-
sidered as effective theories of the Ginsburg–Landau-type for superconductivity
(Banks and Lykken, 1990; Chenet al., 1989; Fetteret al., 1989). These models
are in fact the relativistic generalizations of the well-known Ginsburg–Landau
phenomenological field-theory models of superconductivity (Abrikosov, 1957a,b;
Ginsburg and Landau, 1950). Some basics of the abelian Higgs models in the sym-
metry phase (Bogomol’nyi, 1976a,b; De Vega and Schaposnik, 1976; Friedberg
and Lee, 1977a,b, 1978; Jackobs and Rebbi, 1986; Kulshreshtha, in press-a; Lee
et al., 1991; Lee and Nam, 1991; Nielsen and Olesen, 1973a,b) as well as in
the broken symmetry phase (Boyanovsky, 1990), in one space, one time dimen-
sion, are recapitulated in the next section (Bogomol’nyi, 1976a,b; De Vega and
Schaposnik, 1976; Friedberg and Lee, 1977a,b, 1978; Jackobs and Rebbi, 1986;
Kulshreshtha, in press-a; Leeet al., 1991; Lee and Nam, 1991; Nielsen and Olesen,
1973a,b).

Also, the quantization of field-theory models has always been a challenging
problem. In a recent paper (Kulshreshtha, 2000b), the Hamiltonian (Dirac, 1950,
1964) and Becchi–Rouet–Stora–Tyutin (BRST) (Becchiet al., 1974; Henneaux,
1985; Kulshreshtha, 1998, 2000a,b, in press-b; Kulshreshtha and Kulshreshtha,
1999, in press; Kulshreshthaet al., 1993a–c, 1994a–d, 1995, 1999; Nemeschansky
et al., 1988; Tyutin) quantization of the abelian Higgs model in (1+1)-dimension
have been studied in the broken symmetry phase (Boyanovsky, 1990) under some
specific gauge choices in the usual instant-form, on the hyperplanesx0 = constant
(Kulshreshtha, 2000b). In the present work, a consistent light-front Hamiltonian
(Dirac, 1950, 1964) and BRST (Becchiet al., 1974; Henneaux, 1985; Kulshreshtha,
1998, 2000a,b, in press-b; Kulshreshtha and Kulshreshtha, 1999, in press;
Kulshreshthaet al., 1993a–c, 1994a–d, 1995, 1999; Nemeschanskyet al., 1988;
Tyutin) quantization of this theory in the broken symmetry phase (Boyanovsky,
1990) with some specific light-cone gauges (Dirac, 1949) is presented.

Further, in the usual Hamiltonian formulation of a gauge-invariant theory un-
der some gauge-fixing conditions, one necessarily destroys the gauge invariance
of the theory by fixing the gauge (which converts a set of first-class constraints into
a set of second-class constraints, implying a breaking of gauge invariance under
the gauge fixing). To achieve the quantization of a gauge-invariant theory such
that the gauge invariance of the theory is maintained even under gauge fixing, one
goes to a more generalized procedure called the BRST formulation (Becchiet al.,
1974; Henneaux, 1985; Kulshreshtha, 1998, 2000a,b, in press-b; Kulshreshtha
and Kulshreshtha, 1999, in press; Kulshreshthaet al., 1993a–c, 1994a–d, 1995,
1999; Nemeschanskyet al., 1988; Tyutin). In the BRST formulation of a gauge-
invariant theory, the theory is rewritten as a quantum system that possesses a
generalized gauge invariance called the BRST symmetry. For this, one enlarges
the Hilbert space of the gauge-invariant theory and replaces the notion of the
gauge transformation, which shifts operators byc-number functions, by a BRST
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transformation, which mixes operators having different statistics. In view of this,
one introduces new anticommuting variablesc and c̄ called the Faddeev–Popov
ghost and antighost fields, which are Grassmann numbers on the classical level and
operators in the quantized theory, and a commuting variable b called the Nakanishi–
Lautrup field (Becchiet al., 1974; Henneaux, 1985; Kulshreshtha, 1998, 2000a,b,
in press-b; Kulshreshtha and Kulshreshtha, 1999, in press; Kulshreshthaet al.,
1993a–c, 1994a–d, 1995, 1999; Nemeschanskyet al., 1988; Tyutin). In the BRST
formulation, one thus embeds a gauge-invariant theory into a BRST-invariant sys-
tem, and the quantum Hamiltonian of the system (which includes the gauge fixing
contribution) commutes with the BRST charge operatorQ as well as anti-BRST
charge operator̄Q. The new symmetry of the quantum system (the BRST symme-
try) that replaces the gauge invariance is maintained (even under the gauge fixing)
and hence projecting any state onto the sector of BRST-invariant and anti-BRST-
invariant states yields a theory that is isomorphic to the original gauge-invariant
theory.

The instant-from Hamiltonian and BRST formulations of the abelian Higgs
model in the symmetry phase (Bogomol’nyi, 1976a,b; De Vega and Schaposnik,
1976; Friedberg and Lee, 1977a,b, 1978; Jackobs and Rebbi, 1986; Kulshreshtha,
in press-a; Leeet al., 1991; Lee and Nam, 1991; Nielsen and Olesen, 1973a,b)
have been studied in Kulshreshtha (in press-a), and in the broken symmetry phase
(where the phase of the complex matter field carries the charge degree of freedom
of the complex matter field; Boyanovsky, 1990) in Kulshreshtha (2000b). In the
present work the Hamiltonian and BRST formulations of the model are studied
in the broken symmetry phase in the light-front frame, i.e. on the hyperplanes√

2x+ = (x0+ x1) = constant (Dirac, 1949). After a brief recapitulation of the
basics of the abelian Higgs model (in the symmetry phase as well as in the broken
symmetry phase) in the next section, its Hamiltonian formulation in the broken
symmetry phase in the light-front frame is considered in Section 3 and its cor-
responding light-front BRST formulation (also in the broken symmetry phase) is
studied in Section 4.

2. SOME BASICS OF THE MODEL: A RECAPITULATION

2.1. Model in the Symmetry Phase

The two-dimensional abelian Higgs model in the symmetry phase is defined
by the action (Bogomol’nyi, 1976a,b; De Vega and Schaposnik, 1976; Friedberg
and Lee, 1977a,b, 1978; Jackobs and Rebbi, 1986; Kulshreshtha, in press-a; Lee
et al., 1991; Lee and Nam, 1991; Nielsen and Olesen, 1973a,b):

S =
∫

L (8,8∗, Aµ) d2x (2.1a)
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L = − 1

4e2
FµνFµν + (D̃µ8

∗)(Dµ8)− V(|8|2) (2.1b)

V(|8|2) = α0+ α2|8|2+ α4|8|4 (2.1c)

= λ
(|8|2−82

0

)2
, 80 6= 0 (2.1d)

Dµ = (∂µ + ieAµ), D̃µ = (∂µ − ieAµ) (2.1e)

Fµν = (∂µAν − ∂νAµ) (2.1f)

gµν := diag (+1,−1), µ, ν = 0, 1 (2.1g)

The model is well known to possess stable, time-independent (i.e., static),
classical solutions called the topological solitons of the vortex type (Banerjee
et al., 1995, 1997; Bogomol’nyi, 1976a,b; De Vega and Schaposnik, 1976; Dunne
and Trugenberger, 1991; Forte, 1992; Friedberg and Lee, 1977a,b, 1978; Jackiw,
1989; Jackobs and Rebbi, 1986; Krive and Rozhavskii, 1987; Kulshreshtha,
in press-a; Leeet al., 1991; Lee and Nam, 1991; Nielsen and Olesen, 1973a,b;
Saint-Jameset al., 1969).

In a quantum theory of the kind that we are considering here, for a specific
form of the Higgs potential which admits static solutions, in general, one could
havetwo degenerate minima—a symmetry breaking minimum and a symmetry
preserving minimum—and correspondingly the theory could have two types of
classical solutions—the topological vortices with quantized magnetic flux as we
have in the Ginsburg–Landau model, where it is possible to define a conserved
topological current and a corresponding topological charge which is quantized
and is related to the topological quantum number called the winding number and
the other type of classical solutions are the nontopological solitons with nonvan-
ishing but not necessarily quantized magnetic flux (Banerjeeet al., 1995, 1997;
Bogomol’nyi, 1976a,b; De Vega and Schaposnik, 1976; Dunne and Trugenberger,
1991; Friedberg and Lee, 1977a,b, 1978; Jackobs and Rebbi, 1986; Kulshreshtha,
in press-a; Leeet al., 1991; Lee and Nam, 1991; Nielsen and Olesen, 1973a,b). The
main new result of such studies is the identification of the Ginsburg–Landau the-
ory with the static solution of the Higgs type of Lagrangian (Abrikosov, 1957a,b;
Banerjeeet al., 1995, 1997; Banks and Lykken, 1990; Bogomol’nyi, 1976a,b;
Chenet al., 1989; De Vega and Schaposnik, 1976; Dunne and Trugenberger,
1991; Fetteret al., 1989; Forte, 1992; Friedberg and Lee, 1977a,b, 1978; Ginsburg
and Landau, 1950; Jackiw, 1989; Jackobs and Rebbi, 1986; Krive and Rozhavskii,
1987; Kulshreshtha, in press-a; Leeet al., 1991; Lee and Nam, 1991; Nielsen and
Olesen, 1973a,b; Saint-Jameset al., 1969).

Further, in the present model, considered with a Higgs potential in the form
of a double well potential with80 6= 0, the spontaneous symmetry breaking takes
place owing to the noninvariance of the lowest (ground) state of the system (because
80 6= 0) under the operation of the localU (1) symmetry. Also the symmetry that
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is broken is still a symmetry of the system and it is manifested in a manner other
than the invariance of the lowest or ground state (80) of the system. However, no
Goldstone boson occurs here and instead the gauge field acquires a mass through
some kind of a Higgs mechanism and the symmetry is manifested in the Higgs
mode.

In general, one can keep here the Higgs potential rather general, i.e., without
making any specific choice for the parameters of the potential except that they are
chosen such that the potential remains a double well potential with80 6= 0. For
further details we refer to the work of Banerjeeet al. (1995, 1997), Bogomol’nyi
(1976a,b), De Vega and Schaposnik (1976), Dunne and Trugenberger (1991),
Friedberg and Lee (1977a,b, 1978), Jackobs and Rebbi (1986), Kulshreshtha
(in press-b), Leeet al.(1991), Lee and Nam (1991), Nielsen and Olesen (1973a,b),
and references therein. The instant-form model in the symmetry phase has been
studied in Kulshreshtha (in press-a). This theory considered in the symmetry
phase in the instant-form is seen to possess a set of two first-class constraints
(Kulshreshtha, in press-a):

χ1 = 50 ≈ 0 (2.2a)

χ2 = [∂1E − ie(5∗8∗ −58)] ≈ 0 (2.2b)

whereχ1 is a primary constraint andχ2 is the secondary Gauss-law constraint. The
theory is accordingly seen to possess a local vector gauge symmetry and remains
invariant under the local vector gauge transformations (Kulshreshtha, in press-a):

δ8 = iβ8, δ8∗ = −iβ8∗, (2.3a)

δA0 = −∂0β, δA1 = −∂1β, δ50 = 0, ∂E = 0 (2.3b)

δ5 = −eβA08
∗ − iβ∂08

∗ + i (e− 1)8∗∂0β (2.3c)

δ5∗ = −eβA08+ iβ∂08− i (e− 1)8∂0β (2.3d)

where the gauge parameterβ = β(xµ) is a function of its arguments. Also, the
divergence of the vector gauge current density for the theory is seen to vanish
explicitly (Kulshreshtha, in press-a), implying that the theory possesses at the
classical level a local vector gauge symmetry, which is seen to be consistent with the
above results (Kulshreshtha, in press-a). The Hamiltonian and BRST formulations
of this model in the symmetry phase in the instant-form have been studied in details
in Kulshreshtha (in press-a) under some specific gauge choices (Kulshreshtha,
in press-a) and for further details we refer to the work of Kulshreshtha (in press-a).

The Hamiltonian and BRST formulations of this theory in the broken symme-
try phase in the usual instant-form have been studied in Kulshreshtha (2000b). In the
present work, the theory is studied in the broken symmetry phase in the light-front
frame (Dirac, 1949) on the hyperplanes

√
2x+ ≡ √2t = (x0+ x1) = constant

(Dirac, 1949; Kulshreshtha and Kulshreshtha, 2000; Srivastava, 1998, 1999).



P1: GCR/GDW

International Journal of Theoretical Physics [ijtp] pp345-ijtp-364907 January 22, 2002 17:35 Style file version Nov. 19th, 1999

256 Kulshreshtha and Kulshreshtha

2.2. Model in the Broken Symmetry Phase

In the present work we study the abelian Higgs model in the broken symmetry
phase (Boyanovsky, 1990) of the complex matter field8 [≡8(xµ)] on the light-
front (Dirac, 1949). For this purpose, for the complex matter field8 we take
(Boyanovsky, 1990)

8 = 80 exp[iφ], 80 6= 0 (2.4)

Here φ [≡φ(xµ)] is the phase of the complex scalar field8. The action of
the theory (Bogomol’nyi, 1976a,b; De Vega and Schaposnik, 1976; Friedberg and
Lee, 1977a,b, 1978; Jackobs and Rebbi, 1986; Kulshreshtha, in press-a; Leeet al.,
1991; Lee and Nam, 1991; Nielsen and Olesen, 1973a,b) in the broken symmetry
phase (Boyanovsky, 1990) then becomes

S =
∫

L d2x (2.5a)

L := −1

4e2
FµνFµν + 1

2
(∂µφ + eAµ)(∂µφ + eAµ) (2.5b)

It is important to notice here that the vector gauge bosonAµ becomes massive in
the broken symmetry phase. This mass generation of the vector gauge boson takes
place perhaps through a mechanism similar to the Higgs mechanism (Boyanovsky,
1990). The phaseφ carries the charge degree of freedom of8 and is in fact akin to
the Goldstone boson and is to be treated as a dynamical field (Boyanovsky, 1990).
Also the ground state in the broken symmetry phase is not rotational invariant.
Thus the theory considered in the broken symmetry phase can be thought of as a
Higgs Lagrangian where the Higgs potential has been set to zero by freezing the
complex matter field8 at the degenerate minima of the potential. Such studies
of the theory in the broken symmetry (superfluid) state could be relevant for the
effective theories in the condensed matter as the action of the theory describes
the low-lying excitations in the broken symmetry phase (Boyanovsky, 1990). In
the present work we study the Hamiltonian and BRST formulations of the theory
described by the action (2.5) in the light-front frame.

2.2.1 The Instant-Form Theory

This theory considered in the broken symmetry phase defined by (2.5) when
considered in the instant-form is seen to possess a set of two first-class constraints
(Kulshreshtha, 2000b):

ρ1 = 50 ≈ 0 (2.6a)

ρ2 = [∂1E + eπ ] ≈ 0 (2.6b)
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whereρ1 is a primary constraint andρ2 is the secondary Gauss-law constraint. The
theory is accordingly seen to possess a local vector gauge symmetry and remains
invariant under the local vector gauge transformations (Kulshreshtha, 2000b):

δφ = eβ, δA0 = −∂0β, δA1 = −∂1β (2.7a)

δπ = δ50 = δE = 0 (2.7b)

where the gauge parameterβ = β(xµ) is a function of its arguments. Also, the
divergence of the vector gauge current density for the theory is seen to vanish
explicitly (Kulshreshtha, 2000b), implying that the theory possesses at the classical
level a local vector gauge symmetry, which is seen to be consistent with the above
results (Kulshreshtha, 2000b). The Hamiltonian and BRST formulations of this
model in the symmetry phase in the instant-form have been studied in details in
Kulshreshtha (2000b) under some specific gauge choices, and for further details
we refer to the work of Kulshreshtha (2000b).

In the following section we consider the Hamiltonian and BRST formulations
of the light-front theory in the broken symmetry phase.

3. HAMILTONIAN FORMULATION OF THE LIGHT-FRONT
THEORY IN THE BROKEN SYMMETRY PHASE

For considering the Hamiltonian formulation of the model in the broken
symmetry phase in the light-front frame (i.e., on the hyperplanes

√
2x+ = √2t =

(x0+ x1) = constant) (Dirac, 1949), we express the action of the theory (2.5) in
the light-front frame (Dirac, 1949), which in (1+1)-dimensions reads as (Banerjee
et al., 1995, 1997; Bogomol’nyi, 1976a,b; De Vega and Schaposnik, 1976; Dunne
and Trugenberger, 1991; Friedberg and Lee, 1977a,b, 1978; Jackobs and Rebbi,
1986; Kulshreshtha, in press-a; Leeet al., 1991; Lee and Nam, 1991; Nielsen and
Olesen, 1973a,b)

S=
∫

L dx+ dx− (3.1a)

L = 1

2e2
[∂+A+ − ∂−A−]2+ (∂+φ)(∂−φ)

+ e[ A−(∂−φ)+ A+(∂+φ)] + e2A+A− (3.1b)

In the following, we would consider the Hamiltonian formulation of the theory
described by the action (3.1). The Euler–Lagrange field equations of motion of the
theory obtained from (3.1) are

−2∂−∂+φ − e(∂+A+ + ∂−A−) = 0 (3.2a)

e(∂+φ)+ e2A− − 1

e2
∂+(∂+A+ − ∂−A−) = 0 (3.2b)
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e(∂−φ)+ e2A+ + 1

e2
∂−(∂+A+ − ∂−A−) = 0 (3.2c)

The canonical momenta obtained from (3.1) are

π := ∂L

∂(∂+φ)
= (∂−φ + eA+) (3.3a)

5+ := ∂L

∂(∂+A−)
= 0 (3.3b)

5− := ∂L

∂(∂+A+)
= 1

e2
(∂+A+ − ∂−A−) (3.3c)

Here π,5+, and5− are the momenta canonically conjugate, respectively, to
φ, A−, andA+. Equations (3.3) imply that the theory possesses two primary
constraints:

χ1 = 5+ ≈ 0, χ2[π − ∂−φ − eA+] ≈ 0 (3.4)

Here the symbol≈ denotes theweakequality in the sense of Dirac, and it implies
that the left-hand side of the equation vanishes strongly only on the hypersurface
or the reduced surface of the constraints of the theory and it is nonvanishing
everywhere else in the rest of the phase space of the theory (Dirac, 1950, 1964).
The canonical Hamiltonian density corresponding toL (3.1) is

Hc := π (∂+φ)+5+(∂+A−)+5−(∂+A+)− L (3.5a)

= 1

2
e2(5−)2+5−(∂−A−)− eA−(∂−φ)− e2A+A− (3.5b)

After including the primary constantχ1 in the canonical Hamiltonian densityHc

with the help of the Lagrange multiplier fieldu, the total Hamiltonian densityHT

could be written as

HT = 1

2
e2(5−)2+5−(∂−A−)− eA−(∂−φ)− e2A+A−

+ 5+u+ (π − ∂−φ − eA+)v (3.6)

The Hamilton’s equations obtained from the total Hamiltonian

HT =
∫
HT dx− (3.7)

are

∂+φ = ∂HT

∂π
= v (3.8a)

−∂+π = ∂HT

∂φ
= ∂−v + e∂−A− (3.8b)
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∂+A− = ∂HT

∂5+
= u (3.8c)

−∂+5+ = ∂HT

∂A−
= −∂−5− − e∂−φ − e2A+ (3.8d)

∂+A+ = ∂HT

∂5−
= e25− + ∂−A− (3.8e)

−∂+5− = ∂HT

∂A+
= −e2A− − ev (3.8f)

∂+u = ∂HT

∂5u
= 0 (3.8g)

−∂+5u = ∂HT

∂u
= 5+ (3.8h)

∂+v = ∂HT

∂5v
= 0 (3.8i)

−∂+5v = ∂HT

∂v
= 5− ∂−φ − eA+ (3.8j)

These are the equations of motion of the theory that preserve the constraints of
the theory in the course of time. The Lagrange multiplier fieldsu andv as well
as their canonically conjugate momenta5u and5v are to be treated henceforth
as the dynamical fields like all other field variables of the theory. Their dynamics
is given by the Hamilton’s equations (3.8g)–(3.8j). For the Poisson bracket{ , }p
of two functionsA andB, we choose the following convention:

{A(x), B(y)}p :=
∫

dz
∑
α

[
∂A(x)

∂qα(z)

∂B(y)

∂pα(z)
− ∂A(x)

∂pα(z)

∂B(y)

∂qα(z)

]
(3.9)

Demanding that the primary constraintχ1 be preserved in the course of time, one
obtains the secondary Gauss-law constraint of the theory as

χ3 := {χ1,HT}p = [∂−5− + e∂−φ + e2A+] ≈ 0 (3.10)

The preservation ofχ2 for all times does not give rise to any further constraints.
The theory is thus seen to possess only three constraintsχ1, χ2, andχ3:

χ1 = 5+ ≈ 0 (3.11a)

χ2 = [π − ∂−φ − eA+] ≈ 0 (3.11b)

χ3 = [∂−5− + e∂−φ + e2A+] ≈ 0 (3.11c)

whereχ1 andχ2 are primary constraints andχ3 is a secondary constraint.
Further, the matrix of the Poisson brackets of the constraintsχi is seen to

be a singular matrix, implying that the set of constraintsχi is first-class and that
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the theory described by (3.1) is a gauge-invariant theory. The action of the theory
S(3.1) is in fact seen to be invariant under the local vector gauge transformations:

δφ = eβ, δA+ = −∂−β, δA− = −∂+β, δu = −∂+∂+β (3.12a)

δv = e∂+β, δπ = δ5+ = δ5− = δ5v = δ5u = 0 (3.12b)

whereβ ≡ β(x+, x−) is an arbitrary function of its arguments. The generator of
the local vector gauge transformations is the charge operator of the theory:

J+ =
∫

j+ dx− =
∫

dx−
[
eβ(∂−φ + eA+)− 1

e2
(∂−β)(∂+A+ − ∂−A−)

]
(3.13)

The current operator of the theory is

J− =
∫

j− dx− =
∫

dx−
[
eβ(∂+φ + eA−)+ 1

e2
(∂+β)(∂+A+ − ∂−A−)

]
(3.14)

The divergence of the vector gauge current density, namely∂µ j µ, is therefore seen
to vanish so that

∂µ j µ = ∂+ j+ + ∂− j− = 0 (3.15)

implying that the theory possesses (at the classical level) a local vector gauge
symmetry.

In order to quantize the theory using Dirac’s procedure we convert the set
of first-class constraints of the theoryχi into a set of second-class constraints, by
imposing, arbitrarily, some additional constraints on the system called gauge-fixing
conditions or the gauge constraints. For this purpose, for the present theory, we
could choose, for example, the set of gauge-fixing conditions: (A)ρ1 = A+ = 0
andρ2 = A− = 0; and (B)ψ1 = ∂−A+ = 0 andψ2 = ∂−A− = 0. Corresponding
to this choice of the gauge-fixing conditions, we have the following two sets of
constraints under which the quantization of the theory could be studied:

(A) ξ1 = χ1 = 5+ ≈ 0 (3.16a)

ξ2 = χ2 = [π − ∂−φ − eA+] ≈ 0 (3.16b)

ξ3 = χ3 = [∂−5− + e∂−φ + e2A+] ≈ 0 (3.16c)

ξ4 = ρ1 = A+ ≈ 0 (3.16d)

ξ5 = ρ2 = A− ≈ 0 (3.16e)

and

(B) η1 = χ1 = 5+ ≈ 0 (3.17a)
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η2 = χ2 = [π − ∂−φ − eA+] ≈ 0 (3.17b)

η3 = χ3 = [∂−5− + e∂−φ + e2A+] ≈ 0 (3.17c)

η4 = ψ1 = ∂−A+ ≈ 0 (3.17d)

η5 = ψ2 = ∂−A− ≈ 0 (3.17e)

The matrices of the Poisson brackets among the set of constraintsξi andηi are now
seen to be nonsingular (and therefore invertible) and are omitted here for the sake of
brevity. It is important to note here that the set of gauge-fixing conditions chosen
here in either (3.16) or (3.17) are not only consistent with the Dirac procedure
(Dirac, 1950, 1964), but are also of physical importance, in the sense that the gauge
choiceA+ = 0, or equivalently∂−A+ = 0, represents the temporal or the time-
axial gauge and the gauge choiceA− = 0, or equivalently∂−A− = 0, represents
the so-called Coulomb gauge.

The Dirac bracket{ , }D of the two functionsA andB is defined as (Dirac,
1950, 1964)

{A, B}D = {A, B}p−
∫ ∫

dw dz
∑
α,β

[{A, 0α(w)}p
[
1−1
αβ (w, z)

]{0β(z), B}p
]

(3.18)

where0i are the constraints of the theory and1αβ(w, z) [={0α(w), 0β(z)}p] is the
matrix of the Poisson brackets of the constraints0i . The transition to quantum the-
ory is made by the replacement of the Dirac brackets by the operator commutation
relations according to

{A, B}D −→ (−i )[ A, B], i = √−1 (3.19)

Finally, the nonvanishing equal-time commutators of the theory in Case A, i.e.,
in the gaugeA+ = 0 and A− = 0, are obtained as (Kulshreshtha, 1998, 2000,
in press-b; Kulshreshtha and Kulshreshtha, 1999, in press; Kulshreshthaet al.,
1993a–c, 1994a–d, 1995, 1999)

[φ(x), φ(y)] = −1

4
i ε(x− − y−) (3.20a)

[φ(x), π (y)] = 3

2
i δ(x− − y−) (3.20b)

[φ(x),5−(y)] = −3

4
ieε(x− − y−) (3.20c)

[π (x), π (y)] = −1

2
i ∂−δ(x− − y−) (3.20d)

[π (x),5−(y)] = −1

2
ieδ(x− − y−) (3.20e)
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[5−(x),5−(y)] = −1

4
ie2ε(x− − y−) (3.20f)

whereε(x − y) is a step function defined as

ε(x − y) :=
{+1, (x − y) > 0
−1, (x − y) < 0

(3.21)

The nonvanishing equal-time commutators of the theory in Case B, i.e., in the
gauge∂−A+ = 0 and∂−A− = 0, are seen to be identical with those of Case A as
they should, and are given by (3.20). This is not surprising in view of the fact that
the gaugesA+ = 0 and∂−A+ = 0, as well asA− = 0 and∂−A− = 0, conceptually
mean the same.

For later use, for considering the BRST formulation of the theory we convert
the total Hamiltonian density into the first-order Lagrangian densityL 10:

L 10 := π (∂+φ)+5+(∂+A−)+5−(∂+A+)+5u(∂+u)+5v(∂+v)−HT

= 5−(∂+A+)−5−(∂−A−)− 1

2
e2(5−)2+ eA−(∂−φ)+ e2A+A−

+ (∂+φ)(∂−φ + eA+)+5u(∂+u)+5v(∂+v) (3.22)

In the above equation, the term5+(∂+A− − u) drops out in view of the Hamilton’s
equations. The appearance of the field variablesu, v,5u, and5v in the above
equation and hereafter, however, does not pose any problems because the variables
u, v,5u, and5v in our treatment are dynamical field variables whose dynamics
is governed by the Hamilton’s equations (3.8g)–(3.8j).

4. BRST FORMULATION OF THE LIGHT-FRONT THEORY
IN THE BROKEN SYMMETRY PHASE

4.1. The BRST Invariance

For the BRST formulation of the model, we rewrite our theory under con-
sideration as a quantum system that possesses the generalized gauge invariance
called BRST symmetry. For this, we first enlarge the Hilbert space of our gauge-
invariant theory and replace the notion of gauge transformation, which shifts op-
erators byc-number functions, by a BRST transformation, which mixes operators
with Bose and Fermi statistics. We then introduce new anticommuting variables
c andc̄ (Grassman numbers on the classical level and operators in the quantized
theory) and a commuting variableb such that (Becchi,et al., 1974; Henneaux,
1985; Kulshreshtha, 1998, 2000a, in press-b; Kulshreshtha and Kulshreshtha, 1999,
in press; Kulshreshthaet al., 1993a–c, 1994a–d, 1995, 1999; Nemeschanskyet al.,
1988; Tyutin):

δ̂φ = ec, δ̂A+ = −∂−c, δ̂A− = −∂+c (4.1a)
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δ̂π = δ̂5+ = δ̂5− = δ̂5u = δ̂5v = 0, δ̂u = −∂+∂+c, δ̂v = e∂+c (4.1b)

δ̂c = 0, δ̂c̄ = b, δ̂b = 0 (4.1c)

with the propertŷδ2 = 0. We now define a BRST-invariant function of the dynam-
ical variables to be a functionf (π,5+,5−,5u,5v, pb,5c,5c̄, φ, A+, A−, u,
v, b, c, c̄) such that̂δ f = 0.

4.2. Gauge Fixing in the BRST Formalism

Performing gauge fixing in the BRST formalism implies adding to the first-
order Lagrangian densityL 10, a trivial BRST-invariant function (Becchiet al.,
1974; Henneaux, 1985; Kulshreshtha, 1998, 2000a,b, in press-b; Kulshreshtha
and Kulshreshtha, 1999, in press-b; Kulshreshthaet al., 1993a–c, 1994a–d, 1995,
1999; Nemeschanskyet al., 1988; Tyutin). We could thus write, for example (where
u, v,5u, and5v are to be treated as dynamical field variables),

L BRST= 5−(∂+A+)−5−(∂−A−)− 1

2
e2(5−)2+ eA−(∂−φ)+ e2A+A−

+ (∂+φ)(∂−φ + eA+)+5u(∂+u)+5v(∂+v)

+ δ̂
[
c̄

(
−∂+A− + 1

e
φ − 1

2
b

)]
(4.2)

The last term in the above equation is the extra BRST-invariant, gauge-fixing term.
After one integration by parts, the above equation could now be written as

L BRST= 5−(∂+A+)−5−(∂−A−)− 1

2
e2(5−)2+ eA−(∂−φ)+ e2A+A−

+ (∂+φ)(∂−φ + eA+)+5u(∂+u)+5v(∂+v)

+ b

(
−∂+A− + 1

e
φ

)
− 1

2
b2+ (∂+c̄)(∂+c)− c̄c (4.3)

Proceeding classically, the Euler–Lagrange equation forb reads

−b =
(
∂+A− − 1

e
φ

)
(4.4)

The requirement̂δb = 0 then implies

−δ̂b =
[
δ̂(∂+A−)− 1

e
δ̂φ

]
= 0 (4.5)

which in turn implies [by settinĝδb = 0]

[−∂+∂+c] = c. (4.6)
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The above equation is also an Euler–Lagrange equation obtained by the variation of
L BRST with respect tōc. In introducing momenta one has to be careful in defining
those for the fermionic variables. We thus define the bosonic momenta in the usual
manner so that

5+ := ∂

∂(∂+A−)
L BRST= −b (4.7)

but for the fermionic momenta with directional derivatives we set

5c := L BRST

←
∂

∂(∂+c)
= ∂+c̄, 5c̄ :=

→
∂

∂(∂+c̄)
L BRST= ∂+c (4.8)

implying that the variable canonically conjugate toc is (∂+c̄) and the variable
conjugate tōc is (∂+c). For writing the Hamiltonian density from the Lagrangian
density in the usual manner we remember that the former has to be Hermitian so
that

HBRST= π (∂+φ)+5+(∂+A−)+5−(∂+A+)+5u(∂+u)+5v(∂+v)

+5c(∂+c)+5c̄(∂+c̄)− L BRST

= 1

2
e2(5−)2+5−(∂−A−)− eA−(∂−φ)− e2A+A−

+ 5+
(

1

e
φ

)
+ 1

2
(5+)2+5c5c̄ + c̄c (4.9)

We can check the consistency of (4.8) and (4.9) by looking at Hamilton’s equations
for the fermionic variables, i.e.,

∂+c =
→
∂

∂5c
HBRST, ∂+c̄ = HBRST

←
∂

∂5c̄
(4.10)

Thus we see that

∂+c =
→
∂

∂5c
HBRST= 5c̄, ∂+c̄ = HBRST

←
∂

∂5c̄
= 5c (4.11)

is in agreement with (4.8). For the operatorsc, c̄, ∂+c, and∂+c̄, one needs to satisfy
the anticommutation relations of∂+c with c̄ or of ∂+c̄ with c, but not ofc with c̄.
In general,c andc̄ are independent canonical variables and one assumes that

{5c,5c̄} = {c̄, c} = 0, ∂+{c̄, c} = 0 (4.12a)

{∂+c̄, c} = (−1){∂+c, c̄} (4.12b)

where{ , } means an anticommutator. We thus see that the anticommutators in
(4.12b) are nontrivial and need to be fixed. In order to fix these, we require
that c satisfy the Heisenberg equation (Becchiet al., 1974; Henneaux, 1985;
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Kulshreshtha, 1998, 2000a, in press-b; Kulshreshtha and Kulshreshtha, 1999,
in press; Kulshreshthaet al., 1993a–c, 1994a–d, 1995, 1999; Nemeschanskyet al.,
1988; Tyutin):

[c,HBRST] = i ∂+c (4.13)

and using the propertyc2 = c̄2 = 0 one obtains

[c,HBRST] = {∂+c̄, c} ∂+c (4.14)

Equations (4.12)–(4.14) then imply

{∂+c̄, c} = (−1){∂+c, c̄} = i (4.15)

The minus sign in the above equation is nontrivial and implies the existence of
states with negative norm in the space of state vectors of the theory (Becchiet al.,
1974; Bogomol’nyi, 1976; De Vega and Schaposnik, 1976; Dirac, 1950, 1964;
Henneaux, 1985; Jackobs and Rebbi, 1986; Nemeschanskyet al., 1988; Nielsen
and Olesen, 1973a,b; Tyutin, xxxx).

4.3. The BRST Charge Operator

The BRST charge operatorQ is the generator of the BRST transformations
(4.1). It is nilpotent and satisfiesQ2 = 0. It mixes operators which satisfy Bose
and Fermi statistics. According to its conventional definition, its commutators with
Bose operators and its anticommutators with Fermi operators for the present theory
satisfy

[φ, Q] = (∂+c), [A+, Q] = −(∂−c), [A−, Q] = (∂+c) (4.16a)

[π, Q] = e(∂−c)+ ∂−∂+c, [5−, Q] = e2c+ e(∂+c) (4.16b)

{∂+c̄, Q} = −∂−5− − e∂−φ − e2A+,
(4.16c)

{c̄, Q} = (−1)[π +5+ − ∂−φ − eA+]

All other commutators and anticommutators involvingQ vanish. In view of (4.16)
the BRST charge operator of the present theory can be written as

Q =
∫

dx− [ic[∂−5− + e∂−φ + e2A+] − i (∂+c)[π +5+ − ∂−φ − eA+]]

(4.17)

This equation implies that the set of states satisfying the conditions

5+|ψ〉 = 0 (4.18a)

[π − ∂−φ − eA+]|ψ〉 = 0 (4.18b)

[∂−5− + e∂−φ + e2A+]|ψ〉 = 0 (4.18c)
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belongs to the dynamically stable subspace of states|ψ〉 satisfying Q|ψ〉 = 0,
i.e., it belongs to the set of BRST-invariant states.

In order to understand the condition needed for recovering the physical states
of the theory we rewrite the operatorscandc̄ in terms of fermionic annihilation and
creation operators. For this purpose we consider (4.6). The solution of Eq. (4.6)
(with the light-cone time variablex+ defined as equal tot) gives the Heisenberg
operatorc(t) (and correspondinglȳc(t)) as

c(t) = eit B+ e−i t D, c̄(t) = e−i t B† + eit D† (4.19)

which at light-cone timet(≡x+) = 0 imply

c ≡ c(0)= B+ D, c̄ ≡ c̄(0)= B† + D† (4.20a)

∂+c ≡ ∂+c(0)= i (B− D), ∂+c̄ ≡ ∂+c̄(0)= −i (B† − D†) (4.20b)

By imposing the conditions

c2 = c̄2 = {c̄, c} = {∂+c̄, ∂+c} = 0 (4.21a)

{∂+c̄, c} = i = (−1){∂+c, c̄} (4.21b)

we now obtain the equations

B2+ {B, D} + D2 = B†2+ {B†, D†} + D†2 = 0 (4.22a)

{B, B†} + {D, D†} + {B, D†} + {B†, D} = 0 (4.22b)

{B, B†} + {D, D†} − {B, D†} − {B†, D} = 0 (4.22c)

{B, B†} − {D, D†} − {B, D†} + {D, B†} = −1 (4.22d)

{B, B†} − {D, D†} + {B, D†} − {D, B†} = −1 (4.22e)

with the solution

B2 = D2 = B†2 = D†2 = 0 (4.23a)

{B, D} = {B†, D} = {B, D†} = {B†, D†} = 0 (4.23b)

{B†, B} = −1

2
, {D†, D} = 1

2
(4.23c)

We now let|0〉 denote the fermionic vacuum for which

B|0〉 = D|0〉 = 0 (4.24)

Defining|0〉 to have norm one, (4.23c) implies

〈0|B B†|0〉 = −1

2
, 〈0|DD†|0〉 = +1

2
(4.25)
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so that

B†|0〉 6= 0, D†|0〉 6= 0 (4.26)

The theory is thus seen to possess negative norm states in the fermionic sector.
The existence of these negative norm states as free states of the fermionic part of
HBRST is, however, irrelevant to the existence of physical states in the orthogonal
subspace of the Hilbert space.

In terms of annihilation and creation operators

HBRST= 1

2
e2(5−)2+5−(∂−A−)− eA−(∂−φ)− e2A+A−

+5+
(

1

e
φ

)
+ 1

2
(5+)2+ 2(B†B+ D†D) (4.27)

and the BRST charge operatorQ is

Q =
∫

dx− (i )[B[(∂−5− + e∂−φ + e2A+)− i (π +5+ − ∂−φ − eA+)]

+ D[(∂−5− + e∂−φ + e2A+)+ i (π +5+ − ∂−φ − eA+)]] (4.28)

Now becauseQ|ψ〉 = 0, the set of states annihilated byQ contains not only the
set of states for which (4.18) hold but also additional states for which

B|ψ〉 = D|ψ〉 = 0 (4.29a)

5+|ψ〉 6= 0 (4.29b)

[π − ∂−φ − eA+]|ψ〉 6= 0 (4.29c)

[∂−5− + e∂−φ + e2A+]|ψ〉 6= 0 (4.29d)

The Hamiltonian is also invariant under the anti-BRST transformation given by

¯̂δφ = −ec̄, ¯̂δA+ = ∂−c̄, ¯̂δA− = ∂+c̄, ¯̂δu = ∂+∂+c̄ (4.30a)

¯̂δπ = ¯̂δ5+ = ¯̂δ5− = ¯̂δ5u = ¯̂δ5v = 0, ¯̂δv = −e∂+c̄ (4.30b)

¯̂δc̄ = 0, ¯̂δc = −b, ¯̂δb = 0 (4.30c)

with the generator or anti-BRST charge

Q̄ =
∫

dx− [−i c̄[∂−5− + e∂−φ + e2A+] + i (∂+c̄)[π +5+ − ∂−φ − eA+]]

=
∫

dx− (−i )[B†[(∂−5− + e∂−φ + e2A+)− i (π +5+ − ∂−φ − eA+)]

+ D†[(∂−5− + e∂−φ + e2A+)+ i (π +5+ − ∂−φ − eA+)]] (4.31)
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We also have

∂+Q = [Q, HBRST] = 0 (4.32a)

∂+ Q̄ = [ Q̄, HBRST] = 0 (4.32b)

with

HBRST=
∫

dx− HBRST (4.32c)

and we further impose the dual condition that bothQ and Q̄ annihilate physical
states, implying that

Q|ψ〉 = 0 and Q̄|ψ〉 = 0 (4.33)

The states for which (4.18) holds satisfy both of these conditions, and in fact are
the only states satisfying both of these conditions since, although with (4.23)

2(B†B+ D†D) = −2(B B† + DD†) (4.34)

there are no states of this operator withB†|0〉 = 0 andD†|0〉 = 0 [cf. (4.26)], and
hence no free eigenstates of the fermionic part ofHBRST which are annihilated by
each ofB, B†, D, D†. Thus the only states satisfying (4.33) are those satisfying
the constraints (3.11).

Further, the states for which (4.18) holds satisfy both the conditions (4.33),
and in fact are the only states satisfying both of these conditions because in view
of (4.21) one cannot have simultaneouslyc, ∂+c andc̄, ∂+c̄ applied to|ψ〉 to give
zero. Thus the only states satisfying (4.34) are those that satisfy the constraints
of the theory (3.11) and they belong to the set of BRST-invariant and anti-BRST-
invariant states.

Alternatively, one can understand the above point in terms of fermionic an-
nihilation and creation operators as follows: The conditionQ|ψ〉 = 0 implies that
the set of states annihilated byQ contains not only the states for which (4.18) holds
but also additional states for which (4.29) holds. However,Q̄|ψ〉 = 0 guarantees
that the set of states annihilated bȳQ contains only the states for which (4.18)
holds, simply becauseB†|ψ〉 6= 0 andD†|ψ〉 6= 0. Thus in this alternative way
also we see that the states satisfyingQ|ψ〉 = Q̄|ψ〉 = 0 (i.e., satisfying (4.33))
are only those states that satisfy the constraints of the theory and also that these
states belong to the set of BRST-invariant and anti-BRST-invariant states.

5. SUMMARY AND DISCUSSION

In this work, we have considered the light-front Hamiltonian and BRST quan-
tization of an abelian Higgs model in one space, one time dimension in the broken
symmetry phase of the complex matter field8, where the phaseφ of the complex
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matter field8 carries the charge degree of freedom of the complex matter field
and is in fact akin to the Goldstone boson. The theory in the broken symmetry
phase can be thought of as a Higgs Lagrangian where the Higgs potential has been
set to zero by freezing the complex matter field8 at the degenerate minima of
the potential. An important thing that happens here is that the vector gauge boson
Aµ becomes massive in the broken symmetry phase and this mass generation
takes place, perhaps, through a mechanism similar to the Higgs mechanism. Also
the theory describes the low-lying excitations in the broken symmetry phase and
therefore these studies could be relevant for the effective theories in the condensed
matter.

In Kulshreshtha (2000b), the present theory has been studied in the usual
instant-form of dynamics (conventional equal-time theory) on the hyperplanes
x0 = constant. In the present work, the theory has been quantized on the light-
front. The light-front quantization which studies the relativistic quantum dynamics
of the physical system on the hyperplanes

√
2x+ ≡ √2t = (x0+ x1) = constant,

also called the front-form theory, has several advantages over the conventional
instant-form (equal-time) theory. In particular, for a light-front theory 7 out of
10 poincare generators are kinematical while the instant-form theory has only
6 kinematical generators (Dirac, 1949; Srivastava, 1998, 1999).

In our treatment, we have made the convention to regard the light-cone vari-
ablex+ ≡ t as the light-front time coordinate and the light-cone variablex− has
been treated as the longitudinal spatial coordinate. The temporal evolution of the
system inx+ is generated by the total Hamiltonian of the system (3.7). If we con-
sider the invariant distance between two space-time points in (1+1)-dimension
(Srivastava, 1998, 1999)

(x − y)2 := (x0− y0)2− (x1− y1)2 (Instant-form) (5.1a)

(x − y)2 := 2(x+ − y+)(x− − y−) (Front-form) (5.1b)

then we find that in the instant-form, the points (on the hyperplanesx0 = y0 =
constant) have space-like separation except when they are coincident when it
becomes light-like one. On the light-front, however, withx+ = y+ = constant,
the distance becomes independent of (x− − y−) and the separation again becomes
space-like. The light-front field theory therefore does not necessarily need to be
local in x−, even if the corresponding instant-form theory is formulated as a local
one (Srivastava, 1998, 1999).

The nonvanishing equal-time commutators of the instant-form theory
(cf. Kulshreshtha, 2000b) are nonlocal and nonvanishing for space-like distances
and violate the microcausality principle (Srivastava, 1998, 1999). The nonvanish-
ing equal-time, light-cone commutators of theory obtained in the present work
(given by Eq. (3.20)), on the other hand, are nonlocal in the light-cone space vari-
ablex− and nonvanishing only on the light-cone. There is therefore no conflict
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with the microcausality principle for the light-front theory unlike the case of the
equal-time commutators in the instant-form theory. The constrained dynamics
of the theory in the instant-form (Kulshreshtha, 2000b) reveals that the theory
possesses a set of two first-class constraints, where one constraint is a primary
constraint and the other one is a secondary Gauss-law constraint. The matrix
of the Poission brackets of these two constraints is a singular matrix and therefore
they form a set of first-class constraints, implying, in turn, that the corresponding
theory is gauge invariant. The theory is indeed seen to possess a local vector gauge
invariance given by (2.7) (Kulshreshtha, 2000b). The constrained dynamics of
the theory in the light-front frame, as studied in the present work, reveals that
the theory in the light-front frame possesses a set of three first-class constraints,
where two constraints are primary and one is a secondary Gauss-law constraint.
The matrix of the Poisson brackets of these three constraints is seen to be singular
and therefore they together constitute a set of first-class constraints, implying that
the theory is gauge invariant. The present theory is indeed also seen to posses a
local vector gauge invariance given by (3.12) and correspondingly there exists a
conserved local vector gauge current given by (3.13).

Now because the set of constraints of the theory is first-class, the Dirac quanti-
zation of the theory is possible only under some suitable gauge-fixing conditions or
gauge choices. The choice of the suitable gauges for this purpose has to be such that
these gauge-fixing conditions along with the original set of constraints of the theory
form a set of second-class constraints so that the matrix of the Poisson brackets of
all these constraints including the gauge-fixing conditions becomes nonsingular
or invertible. Any such gauge-fixing conditions which make this possible are in
principle acceptable gauge choices. However, one can choose the gauge-fixing
conditions of ones choice based on some physical grounds or so to say choices of
more physical importance. The gauge-fixing conditions that we have choosen in
our present work for the Hamiltonian quantization of our theory, e.g., areA+ = 0
or ∂−A+ = 0, both of which represent the temporal or time-axial gauge; and the
other condition that we have used in our present work isA− = 0 or ∂−A− = 0,
both of which correspond to the so-called Coulomb gauge. These conditions are
not only acceptable and consistent with the Dirac quantization procedure but are
also physically interesting gauge choices representing the temporal/time-axial and
the Coulomb gauges.

However, in the above Hamiltonian quantization of the theory under some
gauge-fixing conditions one necessarily destroys the gauge invariance of the theory
by fixing the gauge which converts the set of first-class constraints of the theory
into a set of second-class one, by changing the matrix of the Poisson brackets of the
constraints of the theory from a singular one into a nonsingular (invertible) one.
In view of this, in order to achieve the quantization of our gauge-invariant theory,
such that the gauge invariance of the theory is maintained even under gauge fixing,
we go to a more generalized procedure called the BRST quantization (Becchiet al.,
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1974; Henneaux, 1985; Kulshreshtha, 1998, 2000a,b, in press-b; Kulshreshtha
and Kulshreshtha, 1999, in press; Kulshreshthaet al., 1993a–c, 1994a–d, 1995,
1999; Nemeschanskyet al., 1988; Tyutin). The BRST quantization of the present
gauge-invariant, light-front theory under some specific gauge choice (where a par-
ticular gauge has been choosen by us, only as an example for illustration and is
not unique by any means) has finally been studied in Section 4. In this proce-
dure, the BRST-quantized theory continues to possess the generalized or extended
gauge invariance called the BRST symmetry even under the BRST gauge fix-
ing (cf. Section 4) (Becchiet al., 1974; Henneaux, 1985; Kulshreshtha, 1998,
2000a,b, in press-b; Kulshreshtha and Kulshreshtha, 1999, in press; Kulshreshtha
et al., 1993a–c, 1994a–d, 1995, 1999; Nemeschanskyet al., 1988; Tyutin).
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